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SUMMARY

This report presents two numerical methods to describe the unsteady flow

field In the blade-to-blade plane of an axial fan rotor. These methods solve

the compressible, tlme-dependent, Euler and the compressible, turbulent, time-

dependent, Navler-Stokes conservation equations for mass, momentum, and energy.

The Navier-Stokes equatlons are written In Favre-averaged form and are closed

with an approxlmate two-equatlon turbulence model wlth low Reynolds number

and compressibility effects included. The unsteady aerodynamlc component Is

obtained by superposlng inflow or outflow unsteadlness to the steady condltlons

through tlme-dependent boundary conditions. The integratlon in space Is

performed by using a flnlte-voiume scheme, and the Integration in tlme is per-
formed by using k-stage Runge-Kutta schemes, k = 2,5. The numerical integra-

tion algorithm allows the reduction of the computational cost of an unsteady

simulation involving high-frequency disturbances in both CPU time and memory
requirements. Less than 200 sec of CPU tlme are required to advance the Euler

equations In a computatlonal grid made up of about 2000 grld points during

lO 000 tlme steps on a CRAY Y-MP computer, with a required memory of less than

0.3 megawords.

INTRODUCTION

The reduction of automotive fan noise is now the subject of vigorous
research. A better understanding of fan noise generation calls for a proper
description of the physlcal processes which connect unsteady flow interactlons
with fan blades to far field noise. The unsteady aerodynamic component of the
fan flow field is linked to the resultant far fleld acoustic pattern via the
blade unsteady aerodynamic response, the coupling with the duct, the propaga-
tion In the duct, and the acoustic coupling to the far field noise. The
present work is devoted to numerlcally simulating the unsteady flow field
through the blades of an axlal flow fad Totor by solving the Euler and Navler-
Stokes equations.

*Work funded by Space Act Agreement C-99066-G.



In a classlcal description of the fan flow fleld, the actual three-
dimenslonal flow Is built up by superposlng two two-dimenslonal flow solutions
to yield a quasl-three-dlmenslonal flow field. The first solution Is a
through-flow solutlon, which treats the clrcumferentlally averaged flow. The
through-flow solution deflnes the flow conditions upstream and downstream of
the rotor blades on axlsymmetrlc surfaces. The second solutlon is a blade-
to-blade flow solution on these surfaces, definlng the flow conditions Inside
the rotor blade passage.

In a design approach, simplified through-flow and blade-to-blade solutions
plus empirical correlations are used to define the shape of the alrfolls along
the blade-to-blade surfaces. These airfoils are then staked to generate the
blade. The staking includes blade forward skew resulting from simplifled
acoustic solutions for the Isolated airfoil unsteady aerodynamic response plus
simplified solutions for the acoustic coupling to the far field. The resulting
fan geometries are therefore tested experimentally in order to assess the over-
all performances.

In an Improved design approach, analytical methods become useful to intro-

duce changes In blade shape. These changes are usually defined by using steady

flow analysis methods In order to Improve steady blade performances. The use

of unsteady flow analysis methods should be able to Improve both steady and

unsteady blade performances. The present report describes two computer codes
developed to study the steady and unsteady flow on the blade-to-blade surfaces.

The flow field Is predicted by numerically solving the compressible, tlme-

dependent, Euler and the compressible, turbulent, tlme-dependent, Navler-

Stokes conservation equations for mass, momentum, and energy. The areas of

major concern in solving the governlng conservation equations are the modellng

of turbulence in the Navier-Stokes conservatlon equations, the formulation and
Implementatlon of appropriate boundary conditions, and the formulation of a

tlme-accurate numerical integration algorithm.

The Navler-Stokes equations are written in Favre-averaged form. The con-
servatlon equations for mass, momentum, and energy are closed by using a two-
equation turbulence model with low Reynolds number and compressib111ty effects
Included. The turbulence model Is valid only for steady flows, but despite the
lack of theory, the predlctlon capability of two-equation turbulence models In
unsteady flow computations is not worse than the one obtained In steady flow
computatlons. The proposed turbulence model suggests wall and compressibllity
corrections to standard K-c turbulence models in order to extend their range
of applicability to compressible and separated flow fields. Apart from the
values of the model constants actually specifled, the model should be able to
properly predict the flow turbulence when experimental data are available In
enough detail to guide the model development and fix the values of the con-
stants better.

The unsteady aerodynamic response Is obtained by superposlng Inflow or

outflow unsteadiness to the steady conditions. For an unexcited jet flow, the

Inflow total pressure and density and the outflow static pressure are specified

at constant values. To facIlltate Investigating the influence of acoustic or

pressure excitation, the inflow total pressure and total denslty or the out-

flow static pressure are modified by imposlng time-dependent values. The time

dependence Is usually accomplished by Imposlng a sinusoldal oscillation to the

steady values or a slmpler step function. For now, the unsteady blade



performances can be defined in terms of blade pressure fluctuation amplitude
normalized by the forcing pressure perturbation amplitude, but further work is
needed in order to better define these unsteady blade performances.

The integration in space Is performed by using a flnlte-volume scheme.
Along the boundaries, all of the flow parameters not specified by a boundary
condltion are computed by solvlng thelr conservatlon equations over half of
the control volumes. The integration in time is performed by using multlstage
Runge-Kutta schemes. The numerical integration algorithm has been developed
with the aim of reducing the computational cost of an unsteady simulation
involving high-frequency disturbances. The finite-volume formulation is
adopted to allow the use of an arbitrary grid in the application to complex
flow geometries. The multistage Runge-Kutta scheme is used both to improve
accuracy in time and to extend the stability region of the explicit dlscretlza-
tion. Two-, three-, four-, or flve-stage Runge-Kutta schemes similar to
Jameson's (Jameson et al., 1981) are used. A k-stage scheme can be made stable
for a Courant number up to k - I, but these schemes cannot be more than
second-order accurate in time (Chima, Turkei, and Schaffer, 1987). The order
of the scheme can be selected in accordance with the stability requirements
for the particular problem. Disslpatlve terms have been added to suppress the
tendency for odd and even points decoupling and to prevent the appearance of
wiggles in regions contalning severe pressure gradients. The numerical dissi-

pation is introduced as the difference between second- and fourth-order differ-

ences. The magnitude of the d|sslpatlve terms has been adapted to the local

flow properties by means of a sensof_based on the local pressure gradient.

The overall accuracy is second order in both space and time.

EULER EQUATIONS

The computation of high Reynolds number, unseparated, unsteady cascade
flow fields can be easily accomplished by solving the Euler conservation equa-
tions written in unsteady, compressible form. The basic variables are the gas
density, velocity, and enthalpy. Thelr conservation equations are written as
follows:

P,t + (p Uk),k = 0

(P ui),t + (P Uk ui),k : -P,I

(p ho),t + (p uj ho),j : P,t

where the state equation is

p = (y - l)/y.p.h

The Integration of the previous equations requires the introductlon of the

conditlons to be fulfilled along the boundaries of the domain of interest. The

physical flow domain is represented in figure I. (As an aid to the reader, a

symbols list has been included in the appendix.) The flow domain Is llmited by

inflow, outflow, solid, and periodic boundaries, where appropriate boundary

conditlons are needed. Along the inflow boundary, the total pressure POl,

total density POl, and flow angle _l are specified, whereas the Mach number
is extrapolated from the Interlor. These values can be both steady or time

dependent. Along the outflow boundary, the static pressure P2 is specified,



whereas all other variables are extrapolated from the interior. The value

used for the static pressure can be steady or time dependent. The inflow and

outflow boundary-condltion values are assumed to be constant in the pitchwlse

direction, as theoretically fulfilled only at the upstream and downstream Infi-

nite. Across the solid boundaries, the flux of mass and energy is set equal

to zero, whereas the flux of momentum is evaluated from the blade pressure and

all of the variables are extrapolated from the Interior.

Before starting the tlme integration, proper initial conditions have to

be specifled. These conditions can be either a previously computed steady-

state condition or a simple no-flow condition.

NAVIER-STOKES EQUATIONS

A better description of the unsteady flow field can be accomplished by

solving the Navier-Stokes conservation equations. The solution of the Navler-
Stokes equations is required In the study of the cascade flow fleld at off-

design conditions, when the incidence effects play an important role. The
full Navier-Stokes conservation equations are written in unsteady, compressible

form. The basic variables are the gas density, veloclty, and enthalpy. Their

conservation equations are written In Favre-averaged form as follows:

t + (5 Ok) k : 0

<_ui),t " <pukui>k = -P i " (T:_k p u" u"), , - k i ,k

+ , - " h" ](_ _o),t (_ _j r_o),j : p t ÷ u,,j p,j + [-_j p u j ,j

+ [_ij ul - p u"i u"j Ui],j + U"i,j _ij + p u"i uk" Ui,k

where (HIrsch and Deconlnck, 1985)

u p u " u "

_o i l ho- i i:h+ 2 - 2_

and the state equation Is

. <y- l)/y._._

and the constitutive relations are

2 _k di )_lj : P(Gi,J + _j,1 - ] ,k J

and



qj - Pr

The previous equations are not closed, and someemplrlcal expressions
have to be Introduced for the turbulent quantities. A turbulence model which
reflects the availabllity of experlmental data Is needed. The closure Is
achieved by using a flrst-order turbulence model. These models are probably
the most reliable turbulence models becauseof the avallabillty of experimen-
tal results and computer resources. The K-_ turbulence model adopted here
includes low Reynolds number terms (to account for near wall effects and to

compute separated flows, In accordance with the suggestions given by Borettl

and Martelll, ]98%) and Includes a pressure-density gradient term (to account

for compressibillty, In accordance wlth the suggestlons of Jones and McGulrk,

1987). Note that the model Is strictly valid only for steady flows but that
It can be used In unsteady flow computations without introducing great errors.

The Reynolds stresses and the turbulent heat flux vector are expressed as
follows:

p u" u'"j = -Pt( j ,I- § dij 1,1) 2 jI 01, + Oj 2 _ + di K

G i
" h" =

PUk Pr
t

where

C f K2

gt = e

The Favre-averaged conservatlon equatlons for
follows:

(p K),t + (_ Ol K),i =

K and _ are wrltten as

K,]!

SCK(I_t + I_) + P +
,I

F-pc+O

[ c ](P ¢),t + (_ Ul ¢),I = SCe(1_t + W)

,i

8

+ KCC_I fl (P + G) - C 2 f2 _ c1 ]
+ E

where the turbulence klnetlc energy production Is

the wall terms D and E

,, ,, 0 iP:-pu i uj ,j

are (Borettl and Martelll, 1988)



]2E = -2p c ,k

and the compresslbIlity terms F and G are (Jones and McGulrk, 1987)

_t
F = -

-2

) I

_t
(3 = -

-2 -

P Pi P1
J

The compressibility terms F and G play an Important role only for
hlgh-speed flows, and they have a negllglble influence at low speeds.

The values of the model constants are chosen as follows"

C_ = O.Og C_l = 1.43 C¢2 - 1.92 ScK , 1.0 Scc = 1.3

and the low Reynolds number functions are expressed as

f_ = exp[-2.5/(l + Rt/50)]

fl = 1.0

and

f2 = l.O - 0.33 exp[-Rt2]

where the turbulent Reyno]ds number Is

Finally,

and

u"i,j:lj: -P

The boundary conditions for the Navler-Stokes equations differ from those

adopted for the Euler equations because of the Influence of viscosity. Along

the inflow boundary, the total pressure P01, total denslty P01, flow angle

Bl, Inlet turbulence level TuI,

K = Tu V2

and the length scale of the turbulence motions Lel,



K3/2
- Le

are specified, whereas the Mach number is extrapolated from the interior.
These values can be both steady or tlme-dependent values. Inflow boundary-
condition values constant in the pltchwlse direction are theoretically ful-
filled only at the upstream infinite, but the influence on the cascade flow is
not too strong if enough mesh points are used upstream of the blade cascade.
Along the outflow boundary, the statlc pressure P2 is specifled, but all of
the other variables are extrapolated from the interior. The value used for
the static pressure can be a steady or a time-dependent value. An outflow
boundary-conditlon value constant in the pltchwlse direction is theoretically
fulfilled only at the downsteam infinite but has no influence on the cascade
flow when enough mesh points are used downstream of the blade cascade. Along
the solid boundaries, the velocity, turbulence kinetic energy, and turbulence
kinetic energy dissipation rate vanish. For adiabatic flows, the temperature

gradient normal to the wall is set equal to zero. Otherwise, the temperature
is set equal to the wall value. Across the solid boundaries, the flux of mass

Is set equal to zero, along with the flux of energy for adlabatlc flows. The

flux of momentum, the flux of energy for nonadlabatic flows, and the fluxes of

the turbulent variables are eventually evaluated from the blade pressure and

viscous terms. The denslty Is finally extrapolated from the interior.

NUMERICAL METHOD

The computational domain Is shown in figure 2. The grid is obtained by

the intersection of pseudostreamllnes and pitchwise lines. The equatlons are

dlscretlzed In space by using a cell-centered, flnlte-volume formulation.

Figure 3 shows the flnite-volume molecules approximating Invlscld and viscous
terms. The time derlvatives and the source terms are evaluated at the cell

center grld point. The spatial differences are evaluated as net fluxes across
the faces of the cell, computed at the cell faces, and dlvlded by the cell

area. The dlscretization In space of the invlscid terms of the Navler-Stokes

equations (i.e., the Euler equatlons) thus requlres the cell center grid point

and the 6 surrounding grid points. Slnce the flrst-order derivatlves appear-

Ing in the vlscous terms of the Navler-Stokes equations (stress tensor, heat

flux, and others) are expressed by uslng 4 grid points, the discretizatlon in

space of the Navler-Stokes equatlons involves l? grid points. Global conserva-

tion Is ensured by evaluating the flux vectors on the faces of the boundary

conforming mesh cell. Half-cells are used along the inflow, outflow, and
solid boundaries. The first-order derivatives appearing in the viscous terms

of the Navier-Stokes equations (stress tensor, heat flux, and others) and the

flrst-order derivatives of the invlscid terms are expressed along the bounda-

ries by using one-sided differences. The scheme is second-order accurate

in space on a regular grid.

The equations are Integrated in tlme by using explicit, multistage, dls-

slpatlve, Runge-Kutta algorithms. Nhen the previous time-dependent equations

are rewritten in the following vector form

f t : T(f)



the solution at the tlme t = (m + l)dt Is expressed as a function of quantl-

ties evaluated at the times (m)dt according to the following scheme"

leO>:.

f(1) . f(O) _ C1 dt [Ti(f(O)) + Tv(f(O)) + AV2 D2(f (0)) - AV 4 D4(f(O))]

f(m) . f(O) _ Ck dt [Tl(f (k-l)) + Tv(f(O)) + AV2 D2(f (0)) - AV4 D4(f(O))]

f(m+l) . f(m)

where D2 Is a term approximating second-_rder differences, D4 Is a term

approximating fourth-order differences, AW Is a v_scosity coefficient for
second-order differences, where

AV2 = C abs(D2(p))/(2_)
(AV 2)

with _ an averaged pressure, and AV4 is a viscosity coefficient for
fourth-order differences

AV4 - max(O.O, C(AV 4) - AV2)

The second-order dissipatlve term as well as the averaged pressure Is

evaluated In every mesh cell by using the 7-grid-polnts scheme of flgure 3.
Since the fourth-order terms are expressed as second-order differences of

second-order differences, the dlscretlzatlon In space of these terms involves

the 19 grld points. The residual vector is split into two parts, an Invlscld

and a vlscous one, for convergence-lmproving purposes. The artificial vIs-
coslty coefflcients are chosen as follows for Navler-Stokes solutlons:

C(AV 2) : 0.27 C(AV4 ) - 0.016

whereas slightly larger coefficients are used for Euler solutions.

The time step limit for an explicit scheme is established by the classl-
cal Courant-Frledrich-Levy stability limit (CFL) for invlscld flows,

dt < dr CFL
a+V

where dr Is a characterlstlc dimension of the space dlscretlzatlon, a Is
the speed of sound,

a2 = y._/_

and V Is the velocity. The order of the mu1tlstage Runge-Kutta scheme Is

selected In accordance with the time step and stablllty requirements. By



increasing the order of the multistage Runge-Kutta scheme, the maximumCFL
number increases, and a proper selection of the schemeorder follows from the
prescribed time scale of the unsteady flow. A k-stage schemeused with cen-
tral differencing is stable for a Courant numberof approximately k - l,
depending on the choice of Ci, i = l,k. The influence of a CFL greater than

unity on the maximum time step is shown in figure 4 for a CFL of about 2. For

consistency, Ck = l, whereas for second-order accuracy in time Ck_ l : I/2.
Note that the schemes of this form cannot be more accurate than second-order

for any values of CI, i : l,k (Chima, Turkel, and Schaffer, 1987). The values
of Ci, I = l,k proposed by Chima et al., 1987 for two-, three-, four-, and
five-stage schemes are adopted here, allowing CFL numbers of about 1.00, 1.50,
2.75, and 3.50, respectively. A switch parameter enables the choice of the
k value. A CFL smaller than the one permitted by a l]hear invlscid stability
analysis is adopted in the solution of the Navier-Stokes equations. This
choice was made because of the full coupling of the K'c conservation equations
with the basic variables conservation equations and the neglected viscous
effects contribution to the deflnitlon of the maximum tlme step and also
because of the stronger mesh size variatlons over the computational domain.

RESULTS

The numerical method previously descrlbed was applied to the computatlon

of both steady and unsteady flow fields. The steady computations were per-
formed to assess the basic code steady-flow prediction capabillty, and the

method was applied to the computation of the flow within the low-turning fan

rotor blade section shown in flgure 5. The blade was designed by J. Sanz

(Sanz, 1988, 1989) for an inlet Math number of Ml : 0.20 and an inlet flow

angle of BI = 70.00° (with reference to the axial direction). The blade pro-
vides low turnlng, giving an outlet flow angle of B2 = 65.00° and reducing

the flow speed to an outlet Mach number of M2 = 0.16. The pitch-to-chord

ratio is 0.?5, the maximum thickness-to chord ratio is 0.05, and the blade

chord is about O.lO m.

The steady-flow computation was performed as a transient computation,

starting from initial no-flow conditions and suddenly decreasing the outflow

static pressure to the prescribed steady value. The required consistency In

time reduces the convergence properties with respect to those obtained in

pseudo-unsteady methods (Boretti, 1989b), but the aim of this analysis Is the
simulation of an unsteady flow behavior, not better convergence to a steady

state.

At the beglnnlng of the calculations, the Inflow and outflow boundary con-
ditlons are given as follows

POI = I00 000 N/m 2

POI = 1.21 kg/m 3

B1 : 70.00°

TuI = 0.05



Lel = 0.005 m

P2 = POl

The outflow static pressure is then suddenly reduced to the steady value

P2 = 98 000 N/m2

and the flow starts to exit from the computational domain. After a certain
number of tlme steps, a new steady-flow condition is reached.

The unsteady flow was simulated on the NASA-Ames Cray Y-MP. The computa-
tlons were performed by using time steps of the order of 10 -4 sec, close to
the tlme step limit with CFL equal to unity. The two-stage scheme was
selected during the computations, thus reducing the total computational
effort. The advance of the flow equations in a computationa] grid made up of
about 2000 grid points performing lO 000 tlme steps requires about 300 sec CPU
time when solving the Navler-Stokes equations and about 200 sec CPU time when
solving the Euler equations. The memory required is less than

0.3 megawords.

First, an Euler solution was performed. The computation mesh adopted In

the inviscld computations is presented in figure 6. The grid Is a 25 by 75

H-grld, made up of 25 computational points in the pltchwlse direction and 75

computatlonal points in the axial direction, wi_h 41 computational points

between leading and trailing edges. Figure 7 shows the computed surface Mach

number distributions. The predicted flow field is very close to that
expected, with a large velocity peak close to the blade leading edge followed

by a smooth flow deceleration on the suction side and an almost constant veloc-

ity distribution on the pressure side.

The flow deceleration on the blade suction side can be strong enough to
produce an undesired flow separation. In order to check the flow behavior on
the rear suction slde, a more accurate Navler-Stokes solutlon has been
performed. The computatlonal mesh adopted in the viscous computations is pre-
sented in figure B. The grid Is a 35 by 85 H-grid, made up of 35 computa-
tlonal polnts in the pltchwise dlrection and 85 computatlona] points In the
axial direction, with 49 computatlonal points between leading and trailing
edges. Figure 9 shows the computed constant veloclty llnes. The velocity is
zero at the blade surface. The predicted Navier-Stokes flow field clearly
shows the growth of the boundary layer over the blade surfaces. The growth on
the rear suction side is particularly strong, but the adopted computational
grid is not fine enough to allow the computation of reclrculatlng flows. Fur-
ther Navler-Stokes computations with higher grld refinement close to the blade
rear suction side seem to be necessary before the final acceptance of the
blade shape.

It is to be noted that oscillations of very low amplitude continue Inde-

finitely, because of the wave reflections from the boundaries of the computa-
tional domain, but the influence of these oscillations on the blade pressure

distrlbutlon is negIigible.

Finally, the numerical method was applied to the computatlon of the rotor

flow perturbed by the presence of downstream bodies. The computatlons were

]0



performed by starting from Inltial steady conditions and then superlmposlng to

the steady value for the exlt pressure a slnusoldal dependence of the form

P2(t) = 98 000 [1 + 0.001 sin (O.O01t)] N/m 2

where t is the time in sec.

The successive integration of the Euler equations yields (after a certain

number of tlme steps) a periodic Flow condition, where the rotor pressure
field follows an almost sinusoidal oscillation. Figure lO shows an example of

rotor pressure fluctuations on the blade suction and pressure slde at the

80-percent chord position.

The computed pressure fluctuations are quite close to those expected, per-

haps very close to those speclfled at the outflow boundary. The method appears

to be able to simulate slnusoldal"Pressure oscillations without introducing

strong nonphysical dlsslpatlon_. Obvlously, a better test case is required to

properly determine the prediction capability of the code. Such a comparison

will be possible only when experimental data are available in enough
detail.

CONCLUSIONS

This paper has presented a tlme-accurate numerical method that can prop-

erly describe the steady and unsteady fan rotor flow fields In the

blade-to-blade plane. The numerical integration algorithm reduces the computa-

tional cost of an unsteady simulation InvoIvlng hlgh-frequency dlsturbances In

both CPU time and memory requirements. During the computations performed on

the NASA-Ames Cray Y-MP supercomputer, the advance of the flow equations in a

computational grld made up of about 2000 grld points performing lO 000 time
steps requires about 300 sec CPU time when solvlng the Navler-Stokes equations

and about 200 sec CPU time when solving the Euler equations. The memory
required is less than 0.3 megawords. Thanks to the low computational cost and

the good accuracy obtalned during the simulations, the method appears to be a

useful device to modify blade shape for better steady, aerodynamic perfor-

mances. The code also indicates some ways to improve the unsteady aerodynamic

performance.

II
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APPENDIX - SYMBOLS

artificial viscosity coefficient

speed of sound

absolute

constant

kinematic energy constant

eddy viscosity constant

Courant-Frledrlch-Levy stability criteria

wall term

diffusion vector

Kronecker delta

mesh size

tlme step

wall term

kinetic energy dlsslpatlon rate

compressibility term

function

unknown vector

compressibility term

enthalpy

turbulence kinetic energy

length scale

Mach number

turbulence klnetic energy production

Prandtl number

pressure

heat flux vector

12



Rt

Sc

T

Tu

t

U

V

B

Y

p

p

"t

turbulence Reynolds number

Schmldt number

residual vector

turbulence level

tlme

velocity component

velocity

flow angle

specific heat ratio

heat transfer coefficient

vlscoslty coefficient

density

v|scous stress tensor

Subscripts:

t turbulent

0 total

1 inlet

2 outlet

Superscripts:

m time level

2 second order

4 fourth order
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